
LLNL-JRNL-652054

Adverse Drug Reaction Prediction Using
Scores Produced by Large-Scale
Drug-Protein Target Docking on
High-Performance Computing Machines

M. X. Labute, X. Zhang, J. Lenderman, B.
Bennion, S. E. Wong, F. C. Lightstone

March 20, 2014

PLOS ONE



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



1

Title: Adverse Drug Reaction Prediction Using Scores Produced by Large-Scale 1

Drug-Protein Target Docking on High-Performance Computing Machines2

3

4

5

Authors/Affiliations: Montiago X. LaBute, Computational Engineering Division6

Xiaohua Zhang, Biosciences and Biotechnology Division7

Jason Lenderman, Computational Engineering Division8

Brian Bennion, Biosciences and Biotechnology Division9

Sergio E. Wong, Biosciences and Biotechnology Division10

Felice C. Lightstone, Biosciences and Biotechnology Division11

12

13

14

Institutional Affiliation: Lawrence Livermore National Laboratory15

7000 East Avenue16

Livermore, CA 9455017

18

19

20

21

22

23

24



2

ABSTRACT25

Late-stage or post-market identification of adverse drug reactions (ADRs) 26

is a significant public health issue and a source of major economic liability for 27

drug development. Thus, reliable in silico screening of drug candidates for 28

possible ADRs would be advantageous. In this work, we introduce a 29

computational approach that predicts ADRs by combining the results of 30

molecular docking and leverages known ADR information from DrugBank and 31

SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) 32

to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein 33

targets.  L1-regularized logistic regression models were trained on the resulting 34

docking scores of a subset of 560 compounds to predict 85 side effects, grouped 35

into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein 36

binding features involve known targets of the drug subset, providing a significant37

probe of off-target effects. As a control, associations of this drug subset with the 38

555 annotated targets of these compounds, as reported in DrugBank, were used 39

as features to train a separate group of models. The Vina off-target models and 40

the DrugBank on-target models yielded comparable median area-under-the-41

receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation 42

(0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed 43

literature to support several putative ADR-protein associations identified by our 44

analysis. Among them, several associations between neoplasm-related ADRs 45

and known tumor suppressor and tumor invasiveness marker proteins were 46

found. A dual role for interstitial collagenase in both neoplasms and aneurysm 47
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formation was also identified. These associations all involve off-target proteins 48

and could not have been found using available drug/on-target interaction data. 49

The application of statistical analysis to highly parallelized molecular docking 50

calculations and clinical databases presented in this study illustrates a path 51

forward to comprehensive ADR virtual screening that can potentially scale with 52

increasing number of CPUs to tens of thousands of protein targets and millions of 53

potential drug candidates.54

55

INTRODUCTION56

Adverse drug reactions (ADRs) are detrimental, rare and complex 57

perturbations of biological pathways by pharmacologically active small 58

molecules. Each year ADRs cause 100,000 fatalities in the US[1].  One cost 59

estimate of drug-related morbidity and mortality is $177 billion annually[2], which 60

is comparable to the public health burden of chronic illnesses like diabetes ($245 61

billion in 2012[3]). A systematic and accurate capability for reliably ruling out 62

severe ADRs early in the drug development process currently does not exist. As 63

a result, billions of research and development dollars are wasted as drugs 64

present with serious ADRs either in late stage development or post-market 65

approval. Highly publicized examples of phase IV failures include rosiglitazone 66

(“Avandia”)[4] and rofecoxib (“Vioxx”)[5]. Early identification of serious ADRs 67

would be ideal.68

Although many ADRs are multi-factorial and depend on patient- and 69

treatment-specific factors (e.g. genetic polymorphisms and medical history of the 70
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patient, treatment dosages, environmental exposures, dynamics and kinetics of 71

the relevant systems biology, etc.), all ADRs are initiated by the binding of a drug 72

molecule to a target, whether these binding events are intended, on-target 73

binding or promiscuous binding to one or more off-target proteins. Currently, 74

pharmaceutical companies commonly employ experimental in vitro toxicity 75

panels to assay small molecule binding to potentially critical protein receptors[6].  76

Unfortunately, these panels probably do not include all of the proteins and 77

receptors needed for high-accuracy prediction of serious ADRs[7]. Even if it were 78

known how to augment toxicity panels to include a minimally complete set of 79

receptors relevant for serious ADRs, there is uncertainty about how efficiently it 80

could be screened.81

An in silico platform that could accurately predict serious ADRs prior to 82

costly in vitro screening panels and clinical safety trials is highly desirable and 83

has been the focus of several recent studies.84

A popular approach is to data-mine the publicly available databases for85

experimentally elucidated interrelationships between the chemical structures of 86

drugs, their known interactions with proteins (most often their intended targets), 87

and their known ADR profiles. An early study by Fliri and co-workers[8] clustered 88

drugs based on their ability to inhibit a selected set of proteins. They showed that 89

similar inhibition profiles indicated a similar set of side effects. More recently, 90

Cobanoglu and co-workers[9] performed probabilistic matrix factorization on a91

1,413 drug x 1,050 known target protein matrix to learn a latent variable 92

correlation structure between drugs and proteins. Drugs were then clustered in 93
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this latent variable space, and it was found that drugs with similar therapeutic 94

actions clustered together, independent of similarities in chemical structure. A95

highly cited effort by Campillos M. et al[10] indicated that drugs with similar side 96

effects have a correspondingly similar profile of protein targets. Another series of 97

studies applied statistical machine learning approaches like support vector 98

machines and sparse canonical correlation analysis (SCCA) to publicly available 99

datasets to train models for ADR prediction. Pauwels et al.[16] used SCCA to 100

relate PubChem[17] chemical substructure fingerprints of 888 approved drugs to 101

1385 side effects in SIDER. Yamanishi and co-workers[18] used a similar 102

approach to integrate drug-protein target data found in DrugBank and Matador 103

with PubChem fingerprints to predict 969 SIDER side effects, applying both 104

SCCA and a kernel regression method. They used the models to predict side 105

effects in 730 previously uncharacterized small molecules in DrugBank where 106

side-effect information was not available in SIDER. Finally, Liu et al.[19] found 107

that adding phenotypic data on the drug (i.e. the presence or absence of side 108

effects, excluding the one being predicted) to a similar feature representation to 109

that considered in [18] greatly enhances prediction of the ADR of interest, 110

obtaining AUCs > 0.9. However, since their approach relies on health outcomes 111

data on the drug compound, the method is unsuitable for ADR prediction in the 112

early-stage development of nascent drug compounds, prior to in vitro studies or 113

clinical trials. In all of the cases listed above, only global quality-of-performance 114

metrics, aggregated across all considered side effects, are reported, making it 115
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difficult to assess how the models performed on individual side effects or classes 116

of side effects. 117

There is another group of studies that more fully exploit the network 118

structure of drug, protein, and ADR entity relationships. A network-oriented 119

approach by Cami [20] analyzed a dataset consisting of 809 drug feature vectors120

(consisting of drug features from DrugBank and PubChem) and proprietary data 121

on the drug side effect profiles. A unique aspect of the dataset is that the time 122

ordering of when specific side effects appeared is reported. Starting with side 123

effect profiles on the drugs from 2005, they trained a logistic regression model 124

that could predict the side effects that manifested between 2006-2010, 125

preserving the temporal order of how they manifest. The preservation of the time-126

ordering of the side effect appearance is appealing, but it is unclear how their 127

approach would generalize to a different dataset. Mizutani[11] applied SCCA to128

find relationships between the drug-protein interaction network of 658 drugs from 129

DrugBank and 1368 proteins extracted from DrugBank and Matador[12]130

databases to 1339 side effects associations as found in SIDER[13]. They found 131

significant enrichment in most of the correlated protein-side effect sets for 132

proteins involved in the same KEGG[14] and Gene Ontology biological 133

pathways[15]. Similarly, Kuhn[21] constructed an explicit network to predict and 134

characterize proteins that cause side effects by drawing statistical inferences 135

between drug-target and drug-ADR links. Their method is able to reveal causal 136

relationships between targets and ADRs but is highly sensitive to outliers. For 137
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instance, there was insufficient statistical power to associate side effects to 138

proteins that were an off-target of only a small number of drugs.139

Indeed, the main weakness of these QSAR-like studies is their reliance on 140

what is present in the experimental data, which will tend to feature a strong bias 141

towards approved drugs (i.e. little representation of serious ADRs ) and on-target 142

or intended effects. It is difficult to see how analysis of drug-intended target 143

binding data could be applied to explore correlations between off-target drug-144

protein binding and possibly rare ADRs.145

Recently, systems biology approaches have been used to predict ADRs 146

by viewing ADRs as perturbations of biological pathways. These approaches 147

seek to transcend the “one drug-one target” paradigm used in traditional drug 148

design which ignores system-wide effects that cause a drug to have unforeseen 149

pharmacological effects[22]. Scheiber et al.[23] integrated several chemical and 150

biological databases by comparing perturbed and unperturbed pathways in a set 151

of compounds that have a common toxicity phenotype. They use this analysis to 152

link pathways with particular ADRs. Huang and co-workers[24] combined clinical 153

observation data with drug-target data and the gene ontology (GO) annotations 154

of the target proteins to predict ADRs. They find a significant improvement in the 155

quality of their models by incorporating features from the protein-protein 156

interaction (PPI) network of the targets. Similarly, Huang et al.[25] increased the 157

median AUCs of their support vector machine models, from 0.591 to 0.700 by 158

adding both PPI network and small molecule structural features to their feature 159

set.160



8

In all of these cited cases, the efforts to solve the ADR prediction problem161

have focused on integrating publicly available and (in some cases proprietary) 162

biological (e.g. physical and chemical small molecule properties, drug-protein 163

associations, protein-protein interaction networks, biological pathway and gene 164

annotations, etc.) and epidemiological data on side effect-related health 165

outcomes (e.g. FDA package label data, clinical trial data) to train statistical 166

models to predict ADRs with various degrees for success.167

A key drawback of using experimental data is that the type and quality of 168

data that exists is influenced as much by the financial limitations of experimental 169

drug development as by the relevant biological science. The drug-protein 170

associations aggregated from DrugBank and Matador can be represented as a 171

Boolean matrix where ‘1’s (‘0’s) would indicate the presence (absence) of an 172

association. This matrix has been used for some of the previous efforts, as noted 173

above, and is highly sparse with ‘0’s indicating both negative results of assays 174

and unperformed assays. ADR-protein associations derived from these data limit 175

us to patterns in known, intended “on-target” associations and limit the ability to 176

find novel off-target associations. Also, data on lead compounds that have failed 177

in the development pipeline are typically regarded as proprietary information and 178

are generally unavailable for inclusion in analysis. Clearly, the majority of publicly 179

available data is biased in ways that are difficult to correct for.180

An alternative approach is to leverage ever-growing libraries of small 181

molecule structures and databases of high-resolution experimentally solved 182

protein structures, such as the Protein Data Bank (PDB)[26]. Technical advances 183
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in drug-protein binding modeling, protein sequencing and homology modeling184

allow high-throughput virtual screening early in the drug discovery process. Vast185

libraries of small molecules can be docked to a large array of protein structures in 186

order to simultaneously predict putative drug targets and ancillary, off-target 187

binding interactions that may have associations to serious ADRs. Yang et al.[27]188

used virtual docking to propose possible interactions between a set of 845 189

proteins and a set of 162 drugs that each must induce at least one of four ADRs. 190

Lounkine et al.[28] predicted the activity of 656 marketed drugs on 73 targets 191

from the Novartis in vitro safety panel using SEA. This was not a true docking 192

study per se, in that SEA calculates the chemical similarity of each drug with 193

each of the native ligands of the 73 targets. Similar to our current study, Wallach 194

and co-workers[29] applied multiple stages of logistic regression to docking 195

scores involving 730 drugs, 830 human protein targets and then applied multiple 196

stages of logistic regression to this data and data on 506 ADRs, producing 32 197

ADR-pathway associations supported by the scientific literature (i.e. PubMed). 198

These studies used the “first principles” approach to circumvent the bias issues 199

in experimental data outlined above, but none of these previous efforts describe200

computational frameworks scalable to the data sizes required for a high-201

accuracy, high-throughput ADR screening panel for nascent compounds. 202

More recently, Reardon[30] reported on a computational effort that uses publicly 203

available profiles of 600,000 chemical compounds and assesses their ability to 204

bind to ~7000 chemical pockets on 570 human proteins. The known expression 205

profiles of the proteins and receptors on human organs is then used to predict 206
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where in the body a given drug will most likely take effect. While these efforts 207

certainly operate at the necessary scale, they do not report a method to 208

statistically associate the docking scores with ADR phenotypes, which is 209

precisely the goal of our work here.210

Our working hypothesis is that it is valuable to predict ADRs as early in the 211

lead identification phase as possible. Structure-based, high throughput, virtual 212

screening is already widely applied in the early stages of drug discovery because 213

of its low cost and high efficiency in identifying putative drug targets. Molecular 214

docking-based screening studies involve fitting a large library of N small 215

molecules into the active sites of M target protein structures, to calculate 216

estimates of binding affinities. M and N can be quite large. Currently, the PDB 217

has M > 90K protein structures, increasing at a rate of over 7500 per year[26].218

The combinatorics of the possible chemical structural space occupied by small 219

molecules is immense, recently estimated as N≈ 1060 possible drug 220

compounds[31].221

These numbers, combined with the complexities of conformational 222

sampling to find the best fit of the small molecule (i.e. “pose”) in the target and 223

the computational cost of the scoring function itself, make high-throughput ADR 224

screening ideal for high-performance computing.225

Zhang et al.[32] implemented a mixed parallel scheme using MPI and 226

multithreading in the existing AutoDock Vina molecular docking program, called 227

VinaLC. One million flexible docking calculations took about 1.4 hours to finish on 228

~15K CPUs. The docking accuracy of VinaLC has been validated against the 229
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DUD (Directory of Useful Decoys) database by the re-docking of X-ray ligands 230

and an enrichment study. The statistical results shown in Table 1 of [32] show 231

VinaLC has a mean receiver operator characteristic area-under the curve (ROC 232

AUC) of 0.64 (95th CI: 0.60-0.68) for the DUD set of decoys/ligands. Root mean 233

square deviation (RMSD) values for self-docked ligands validation can also be 234

found in [32]. As shown in Figure 4 of [32], 64.4% of the top scoring poses were 235

identified with RMSD under the 2.0 Angstrom cutoff while that for the best poses 236

is 70.0%. For the best poses, all the targets have RMSD values within 10 237

Angstroms and about half of the targets have RMSD values less than 1 238

Angstrom. Overall, the VinaLC docking program performed well for re-docking 239

the X-ray ligands back into the active site of the X-ray structures with the default 240

setting for the grid sizes and exhaustiveness = 8. A massively parallel virtual 241

screening pipeline for Molecular Mechanics/Generalized Born Surface Area 242

(MM/GBSA) rescoring has been developed to improve enrichment[33].  The 243

MM/GBSA rescoring method improves the docking benchmark AUC to 0.71, on 244

average. Overall the results demonstrate that MM/GBSA rescoring has higher 245

AUC values and consistently better early recovery of actives than Vina docking 246

alone.247

A significant fraction of these molecules (e.g. drugs approved by the 248

regulatory agency like the U.S. Food and Drug Administration) are annotated 249

with known associated ADRs in public databases such as SIDER. As in the prior 250

work we have cited, machine learning methods can then identify statistical 251

associations between these ADR outcomes and patterns in drug-protein binding252
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as revealed by our VinaLC docking scores, and the results can be used to build 253

predictive models so the probabilities of certain ADRs can be predicted for a 254

nascent or theoretical small molecule drug candidate that may not have 255

undergone in vitro or clinical trial testing. 256

This study potentially provides a technological and methodological path 257

forward to large-scale, high-throughput, in silico, ADR comprehensive screening.258

Our results indicate that molecular docking performed with sufficiently detailed 259

docking models on high-performance computers may provide reliable, cost-260

effective, comprehensive high-throughput screening of a drug candidate for 261

binding across many known on- and off-targets to predict clinically important 262

ADRs.263

264

MATERIALS AND METHODS265

Dataset Creation266

We extracted 4,020 Swiss-Prot protein knowledgebase UniProt ID267

numbers (http://www.uniprot.org/) for proteins that were identified as drug targets 268

in DrugBank as of October 12, 2012 (http://www.drugbank.com/). Mappings to 269

587 experimental structures in the Protein Data Bank (http://www.rcsb.org/pdb/) 270

(PDB) were obtained using the pdbtosp.txt file (Nov 2, 2013) from271

http://www.uniprot.org/docs/pdbtosp which links PDB ID numbers to UniProt IDs.272

A set of quality control rules were then applied (Supplementary Figure 1) which 273

further reduced the list of proteins down to a final set of 409 experimental PDB 274

structures. If multiple structures were given for the same protein, they were 275
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selected by criteria in the following priority order: (1) human species, (2) crystal 276

structure, (3) resolution (in Angstroms). This set of PDBs included 33 structures 277

belonging to 16 UniProt IDs that are a subset of a larger consensus in vitro278

toxicity panel. This panel consists of 44 targets that were presented as a 279

minimum in vitro toxicology panel from a collaboration of four major 280

pharmaceutical companies[6]. The structures of 906 FDA-approved small 281

molecule compounds in SDF format were obtained from the “Orange Book” of 282

approved products[34]. Drugs that have more than 20 rotatable bonds were not 283

included because most of them are natural products. The 3-D structures of target 284

proteins and the small molecule compounds were then prepared for molecular 285

docking calculations as described below.286

A set of 85 side effects were selected from the SIDER database 287

(http://sideeffects.embl.de/; extracted on November 26, 2012) because they were 288

associated with high morbidity, high case fatality ratio, and/or the need for 289

extended hospitalization. Individual side effects were grouped into higher-level 290

health outcome groupings to reduce noise and provide signals at the organ or 291

system level. Individual side effects were identified as lowest level terms in the 292

medical dictionary for regulatory activities (MedDRA)[35]. Following the work of 293

Huang and co-workers[25], the side effects of interest were grouped into ten 294

MedDRA-defined system organ classes: (1) Neoplasms, benign, malignant, and 295

unspecified (“neoplasms”), (2) Blood and lymphatic system disorders 296

(“bloodAndLymph”), (3) Immune system disorders (“immuneSystem”), (4) 297

Endocrine disorders (“endocrineDisorders”), (5) Psychiatric disorders 298
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(“psychDisorders”), (6) Cardiac disorders (“cardiacDisorders”), (7) Vascular 299

disorders (“vascularDisorders”), (8) Gastrointestinal disorders 300

(“gastroDisorders”), (9) Hepatobiliary disorders (“hepatoDisorders”), and (10) 301

Renal and urinary disorders (“renalDisorders”). A subset of 560 of the 906302

compounds in our docking score set were found to have associations to at least 303

one of the 85 side effects we consider. The complete list of side effects by organ 304

class is presented in Supplementary Table I. We produce a 560 x 10 drug-ADR 305

matrix where a ‘1’(‘0’) indicates the presence (absence) of one or more side 306

effects in the group.307

At the end of the dataset creation stage, we have a total of 906 308

compounds (560 with ADR associations), 409 proteins, and 10 outcome groups,309

comprising 85 severe side effects. 310

In order to compare the ADR prediction capability of “off-target” effects, 311

obtained by the molecular docking calculations, with that of experimentally 312

derived “on-target” drug-protein associations, a 560 drug x 555 target protein 313

association matrix was extracted from DrugBank. More precisely, in order for a 314

specific protein to be in the list of 555 proteins, it must be an identified as a 315

‘Target’ in the DrugBank database of one or more of the 560 drugs in our 316

dataset. The matrix is boolean-valued where a ‘1’(‘0’) indicates the presence 317

(absence) of the association in DrugBank.318

319

Drug-protein target molecular docking calculations using VinaLC320
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The 409 target protein structures retrieved from the PDB were processed for 321

molecular docking calculations. The raw PDB files were processed by our in-322

house Protein Function Prediction (PFP) pipeline[36]. The structures of the 323

protein targets were cleaned and protonated. “Cleaning” was defined by the 324

following: alternate location “a” records for atoms were kept, and any ligands (i.e. 325

atoms designated as ‘HETATM’ after the TER record in the PDB file that are not 326

part of common ions) were deleted. Molecular modeling software (Schrodinger 327

Inc.) was used to protonate the protein structure. In those cases where a known 328

catalytic site was identified, the centroid coordinates for the active sites/binding 329

sites of the protein targets were determined by CatSid[37], otherwise, these sites 330

were determined by Sitemap[38]. A similarity to a known catalytic site was 331

identified in 83 cases. Cofactors, metals, and crystallographic waters were 332

removed from the protein structure when performing the docking calculation. 333

Missing residues in the active site were reconstructed. For NMR structures that 334

had multiple models, the first model was used. Similarly, for structures with 335

residues having multiple positions, the first one was used. These pre-treated 336

protein target structures were further processed by the in-house program, 337

preReceptor[33]. The program preReceptor provides interfaces to integrate 338

several external programs for target protein preparation. The preReceptor339

program firstly determines the dimensions of docking grids by utilizing the 340

dms[39] and sphgen programs[40]. The dms program calculates the molecular 341

surface of the target protein, and the sphgen program fills the active site of the 342

target protein with spheres. The dimensions of docking grids were determined by 343
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finding the distribution of sphere along the X-, Y-, and Z-axes. The cutoffs were 344

set when the distribution of spheres changes drastically. In order to reduce the 345

computer time, the target protein was cut by a radius of 30 Å centered at the 346

centroid of active site because the dimensions of the active site usually range 347

from 20 to 40 Å. A cutoff with a radius of 30 Å is sufficient for preReceptor to 348

determine the grid dimension. The dimensions of the docking grids and centroid 349

of active site were stored for docking calculation in the next step. The AMBER350

force field f99SB[41] was employed in the calculation for the receptor grid. Non-351

standard amino acids distant from the binding site were converted to alanine. 352

Otherwise, non-standard amino acids were stored in the library, if present in the 353

active site. Parameters for non-standard amino acids were calculated by AMBER 354

antechamber.The energy minimization of the protein target was carried out using 355

MM/GBSA[33] implemented in the sander program of the AMBER package[41]. 356

The structures were minimized with heavy atom constraints so the geometry of 357

the active site remains unchanged. The PDB files of energy-minimized protein 358

structures were converted to PDBQT files, which are used in the docking 359

procedure. During the conversion, the non-polar hydrogen atoms are removed 360

from the protein target structures. 361

The set of 906 approved drugs were processed by the in-house program, 362

preLigand[33]. Similar to the program preReceptor, the program preLigand363

provides interfaces to integrate several external programs for ligand preparation. 364

All drug compounds were parameterized using the AMBER GAFF force field as 365

determined by the antechamber program in the Amber package[41]. Partial 366
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charges of ligands were calculated using the AM1-BCC method. The structures 367

of ligands were energetically minimized by the MM/GBSA[33] method 368

implemented in sander. The atomic radii developed by Onufriev and coworkers 369

(AMBER input parameter igb=5) were chosen for all GB calculations [42]. Those 370

atoms with GB radii missing from the original program (i.e. fluorine, using a GB 371

radius of 1.47 Å) were added into the sander program. The PDB files of energy-372

minimized ligand structures were converted to multiple-structure PDBQT files, 373

which were used in the docking procedure. As with the receptors, non-polar 374

hydrogen atoms were removed from the ligand structures. All these steps 375

mentioned above have been integrated into the preLigand program.376

The VinaLC parallel docking program[32] was employed to dock the 906 drug 377

compounds into the 409 protein targets. In our previous work [(JCIM DOI: 378

10.1021/ci4005145)], it was found that keeping 5–10 poses strikes a good 379

compromise between accuracy and computational expense. For each of the 906 380

x 409 = 370,554 individual drug-protein complex docking calculations, 20 poses381

were kept, Docking calculations used the coordinates of centroids and 382

dimensions of active sites determined from the previous steps. The PDBQT files 383

for target proteins and compounds obtained from previous steps were used as 384

input files. The docking grid granularity was set to 0.333 Å. The exhaustiveness 385

was set to 12, so that 12 Monte Carlo simulations search for docking poses for 386

each complex. The whole calculation was finished within 1 hour on a high 387

performance computer at LLNL using ~15K CPU cores. The top 20 docking 388

poses were saved for each complex. The top docking score of each complex 389
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were extracted from the docking results. A table of docking scores for the 906 390

ligands X 409 receptors, together with compound’s PubMed ID/name and protein 391

PDB ID, was saved in the CSV format for the statistical analysis described in the 392

following section. Finally, we constructed a virtual version of the consensus 393

toxicity-screening panel of 33 protein receptors. For this smaller 560 x 33 subset 394

of scores, MM/GBSA[43-50] rescoring calculations were performed on the Vina 395

docking poses. To achieve high throughput, molecular docking programs usually 396

employ the scoring functions that often use less computationally intensive 397

methods, such as molecular mechanics force-field methods, empirical scoring 398

functions, and/or knowledge-based potentials[50]. The scoring functions often 399

simplify the calculation by neglecting important terms that are known to influence 400

the binding affinity, such as, solvation, entropy, receptor flexibility, etc[51, 52]. A 401

very popular practice is to rescore top-ranking docking poses using the more 402

accurate, albeit computationally costly, MM/GBSA method to overcome 403

shortcomings in the docking scoring function[33]. The MM/GBSA method 404

accounts for the solvent and entropy effects more accurately. Solvation effects, 405

mainly contributed by water molecules in the biological systems, play a critical 406

role in ligand binding by providing bulk solvent stabilization and solute-407

desolvation, increasing the entropic contribution with the release of water 408

molecules in the active site upon binding, serving as molecular bridges between 409

the ligand and receptor[51].410

411

Statistical analysis412
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The molecular docking calculations produced a 906 x 409 drug-protein 413

docking score matrix. A 560 x 409 subset was extracted, where each of the 560 414

compounds has at least one side effect, as reported in SIDER, for the 10 ADR 415

groups we are considering. Statistical analyses was performed on this data to 416

train predictive models of serious ADRs and characterize putative ADR-protein 417

associations and is outlined below.418

For the analysis, four separate data matrices are considered: (A) a 560 x 419

409 VinaLC drug-protein docking scores (“Vina off-targets”) and (B) a 560 x 555 420

DrugBank drug-target protein association matrix. Matrix (A) is used to train 421

logistic regression models that allow off-target ADR-protein correlations to be 422

explored. Matrix (B) is used to train models on “on-target” drug-protein 423

assoications. The comparison of results between matrices (A) and (B) enable 424

comparisons to be made between the relative predictive capabilities of intended 425

target proteins and off-targets across the different ADR groups. The 16 toxicity 426

panel target proteins in isolation are considered, so we also have a (C) 560 x 16 427

docking score matrix which is a subset of (A) and finally (D) a 560 x 16 boolean 428

matrix which is analogous to (B), representing any drug-target associations 429

reported in DrugBank between the 560 compounds and the 16 proteins of the 430

toxicity panel. It is noted that the separate matrices (C) and (D) are constructed 431

for the same on-target/off-target comparison purpose as matrices (A) and (B). 432

Regarding the construction of the (C) matrix, there were 33 structures for the 16 433

proteins, thus multiple PDB structures mapped to the same UniProt ID were 434

averaged over, so (C) and (D) matrices are conformable. We note here that this 435
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was only done for the virtual toxicity panel. For the main VinaLC docking score 436

matrix (A), the scores for individual PDB structures were mapped one-to-one to 437

the relevant UniProt ID for that protein. The elements in matrices (B) and (D) also 438

correspond to single UniProt IDs.439

Next we define thresholds so the docking scores in matrices (A) and (C) 440

can be used as a heuristic for drug-protein binding. Global and protein-specific 441

thresholds are defined. The raw docking score itself is used as a continuous 442

feature, and (given that more negative scores correspond to stronger binding)443

additional thresholds are defined such that a docking score below the threshold 444

indicates binding or, if above it, not binding. The docking score does not 445

correspond to an actual energy, and it is difficult to set a single value for a 446

threshold. Several thresholds are tried, letting the quality of the models (as 447

quantified by the AUC) determine the best threshold for each ADR. For the Vina 448

scores, ten feature sets are used, based on different choices of threshold: (1) raw 449

docking scores, and then a series of global binding cutoffs: (2) -4.0, (3) -6.0, (4) -450

8.0, (5) -10.0, and (6) -12.0. Four additional thresholds based on protein-specific 451

score percentiles were also defined: (7) 5th percentile, (8) 10th percentile, where 452

the percentiles refer to the docking scores across all 560 compounds for a given 453

protein. The last two thresholds were calculated by transforming the 560 docking 454

scores for each protein into z-scores (i.e. transformed to have zero mean and 455

unit standard deviation). Thresholds of (9) 1 standard deviation (SD) below the 456

mean score (as used in the docking studies of Wallach and co-workers[29]) and 457

(10) 2 SDs below the mean are also used. For the 560 x 16 virtual toxicology458
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panel, which used GBSA scores, the global thresholds were -15, -20, -25, -30, 459

and these can be interpreted as binding free energies. Raw scores, protein-460

specific percentiles, and z-score thresholds are used as features, analogous to 461

the thresholds defined for the VinaLC score matrix (A).462

Logistic regression models were trained and selected through 10-fold cross-463

validation (CV) applied to the ten feature sets each for the data matrices (A) and 464

(C) and then for the Boolean matrices (B) and (D). The training samples were 465

labeled by the 560 x 10 response matrix, consisting of the Boolean associations 466

between the 560 compounds and the ten ADR groups, leading to 22 separate CV 467

runs in all. 468

The lasso penalty or L1 model regularization[53] is an effective method for 469

continuous variable selection in the regime, where the number of training 470

samples is comparable to (or may actually exceed) the number of training 471

samples (i.e. p  nwhere p is the number of potential predictor variables, and n is 472

the number of training samples). The L1 penalty term is proportional to the sum 473

of regression coefficients  that fall off faster than the  2 terms used in L2474

regularization for small values of beta, so the lasso penalty is efficient at 475

shrinking the betas to exactly zero, enabling sparse solutions and thus greater 476

interpretability. The sparseness makes this method especially effective in the 477

biological domain, where frequently a much smaller subset of the features are 478

explanatory of the phenotype or outcome. L1 logistic regression has been 479
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successfully applied to single nucleotide polymorphism (SNP) analysis[54], as480

well as in previous ADR prediction studies[29].481

The ADR prediction problem considered here can be formalized as a 482

case-control problem where a dichotomous variable yki  0,1  is defined for the i-483

th sample and k-th ADR health outcome group with ‘1’ coding cases and ‘0’ 484

indicating controls. Given a feature vector for the i-th sample, 

xi , the probability 485

for the k-th outcome is given by486

487

p yki 1

xi  

1

1 exp 

k

T 

xi







, [1]488

where 

k  k 0,� ,kp  is the parameter vector (including an intercept term) for 489

the k-th outcome, and is typically estimated by maximizing the log-likelihood 490

function491

L

k   yki ln pki  1 yki  ln 1 pki    kj

j1

p


i1

n

               [2]492

493

where the second term in Eqn.(2) is the lasso penalty. 494

The L1-regularized logistic regression was used as implemented in the 495

glmnet package of Friedman and co-workers[55] in the ‘R’ statistical 496

programming environment. For each of the 10 ADR outcome groups in turn, one-497

vs-all logistic regression was used with 10-fold cross validation. During 10-fold 498

cross validation, the following was done simultaneously: the objective function 499
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(area under the receiver-operator characteristic curve (AUC)) was maximized, 500

the model parameters in Eqns. (1) and (2) were estimated, and the optimal L1501

penalty parameter in Eqn.(2) was chosen as the one corresponding to the 502

maximum median AUC. Each 10-fold CV was repeated ten times to average over 503

sampling variability.504

For each of the Vina off-target matrix (A) and the MM/GBSA off-target 505

560x16 matrix (C), the feature set that had the best median AUC is selected and 506

the “best model” is considered. For the DrugBank-derived data matrices (B) and 507

(D), the best median AUC score was chosen as the best model. 508

The statistical significance of putative associations between the ADR 509

groups and docking score matrix protein features were calculated. Statistical 510

significance of the association for a putative ADR-protein pair was determined by 511

the following procedure: univariate p-values for each ADR-protein pair were 512

calculated using Fisher’s exact test if the protein feature was dichotomous (i.e. 513

associated with a binding threshold, or DrugBank association). If the feature was 514

continuous (i.e. the raw docking scores), the Wilcoxon rank sum test was used. 515

In addition to p-values, we analyzed the false discovery rate (FDR) due to 516

multiple hypothesis testing. For the models associated with the larger Vina off-517

targets matrix (A), we calculated q-values, using the ‘qvalue’ R-package of 518

Storey[56], which gives us a way to manage the high false discovery rate that 519

can be associated with large feature sets. For the smaller, virtual, toxicity,520

MM/GBSA matrix (C), the FDR was managed by applying a simple Bonferroni 521

correction[57] to the p-value. 522
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The workflow just described, comprising data integration between 523

DrugBank, UniProt, the PDB, and SIDER, as well as our docking score 524

calculations and subsequent statistical analyses, is shown schematically in525

Figure 1.526

527

PubMed Text Mining to find supportive evidence of ADR-protein 528

associations529

PubMed database (http://www.ncbi.nlm.nih.gov/pubmed) queries were 530

used to search for evidence in the literature to support putative ADR-protein 531

relationships identified by the statistical analyses of the VinaLC drug-protein 532

docking matrix. The protocol for searching the PubMed database was as follows: 533

1) Queries for co-occurrences of the UniProt name of the protein and the 534

MedDRA lowest-level term (LLT) of each individual side effect constituent of the 535

ADR group were performed, 2) If the number of hits returned was substantive536

(~10), or the quality of the hits was high, then the association was triaged for537

manual review of the PubMed results set. An example of a high quality hit is the 538

side effect and the protein terms co-occurring in the title or abstract of an article.539

ADR-protein associations that passed the manual review process were deemed 540

significant and included in Tables I and II.541

542

RESULTS543

         544
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The 560 x 10 drug vs ADR group matrix (C) and the 560 x 409 drug vs 545

protein docking score matrix (A) were used to train logistic regression models 546

using L1-regularization, which allows the model to focus on high-information 547

predictors and helps reduce over fitting.  Figure 2 presents the performance 548

profile of our ADR prediction models. For each ADR group, a “best model” was 549

chosen based on the median AUC score of a model obtained during a single ten-550

fold cross-validation run. The quality of these models was compared to models 551

trained on the 560 drug x 555 DrugBank protein target matrix (B), using the 552

identical statistical model training procedure that was applied to the 560 x 409 553

VinaLC docking score matrix (A). Figure 2 also compares the performance 554

profile of the docking score models with that of the models trained on the 555

DrugBank data. Across all ADR groups, the range of the best model AUCs for556

the VinaLC “off-target” models was 0.60-0.69. The corresponding AUC range for 557

the DrugBank “on-target” models was AUC=0.61-0.74. Focusing on single ADRs, 558

the inter-quartile range of the VinaLC “off-target” AUCs are above those of the 559

DrugBank “on-target” models for both ‘neoplasms’ and ‘vascularDisorders’ ADR 560

groups. The AUC distributions are not significantly different between the two561

datasets for ‘immuneSystem’ and ‘bloodAndLymph’. The DrugBank model AUCs 562

were larger for these ADR groups: ‘psychDisorders’, ‘endocrineDisorders’, 563

‘renalDisorders’, ‘hepatoDisorders’, ‘gastroDisorders’, and ‘cardiacDisorders’. 564

The difference in AUCs implies the importance of the on-target binding 565

contributions for this subset of ADRs.566
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The ability of docking score data to identify potential associations between 567

off-target drug-protein binding and individual side effects in the ADR groups were568

investigated. Additional statistical analysis was performed on the VinaLC drug-569

protein docking score matrix and the logistic regression models to derive 570

associations between ADR groups and proteins. Only 21% (87 out of 409) of the 571

drug-protein binding features involve known protein targets of the drug subset, 572

providing a significant probe of off-target effects.  In Table I, side-effect protein573

pair-wise associations are shown rank-ordered in ascending order, according to 574

that feature’s p-value. For each entry we list the UniProt name and ID of the 575

drug-binding protein, the PDB ID for the protein target used in docking, the p-576

value, the corresponding q-value to indicate the FDR for that feature, and the 577

beta coefficient in the “best” model. Furthermore, the variable selection capacity 578

of L1-regularization was employed, so that a protein feature must have a non-579

zero beta coefficient in order to have been included in Table I. Finally, for 580

inclusion in Table I, the ADR-protein association needed to pass the manual 581

review of PubMed evidence. In the last column of Table I, the level of evidence 582

from PubMed that supports the ADR-protein correlations is shown. For a specific 583

putative ADR-protein entry in Table I, counts in parentheses show the number of 584

papers found in PubMed that contain the co-occurrence of (1) the MedDRA 585

lowest level term for a component individual side effect from the ADR group and586

(2) the UniProt name for the protein. 587

The associations between the ten ADR groups and a subset of the full 588

VinaLC “off-target” docking score matrix (C) were investigated. Models trained 589
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on a 560 x 16 subset of the full VinaLC docking score matrix (C) were compared 590

to the models trained on a 560 x 16 DrugBank on-target subset matrix (D). The 591

docking calculations were refined using the more computationally expensive and 592

more chemically accurate MM/GBSA-correction of the Vina score. The same 593

logistic model training procedure used on the larger predictor sets to train logistic 594

regression models was applied to these smaller matrices. The boxplots of the 595

“best model” AUCs for the screening panel models are shown in Fig.(3). Overall, 596

the range of AUCs for the MM/GBSA “off-target” version of the consensus panel 597

(AUC=0.55-0.65) and the DrugBank “on-target” version (AUC=0.58-0.69) of the 598

panel indicate that the quality of the models are only marginally poorer than 599

those derived from the larger predictor set, but use a factor of ~26 fewer protein 600

features, indicating they may have some value in the drug development pipeline. 601

Across the ADR groups, the MM/GBSA and DrugBank virtual panel model AUCs 602

are similar for ‘immuneSystem’, ‘cardiacDisorders’, ‘gastroDisorders’, 603

‘bloodAndLymph’, and ‘hepatoDisorders’. The MM/GBSA-derived models for the 604

‘endocrineDisorders’, ‘psychDisorders’, and ‘renalDisorders’ ADR groups are all 605

significantly worse than the corresponding DrugBank models.606

Given the role of these 16 proteins in in vitro toxicity panels, it is of interest 607

to see what specific associations they may have with specific side effects.608

Potential ADR-protein associations are shown in Table II, listed by UniProt name 609

and ID. All potential ADR-protein associations had to have a Bonferroni-corrected 610

p-value < 0.05 and a non-zero beta coefficient in the “best” logistic regression 611
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model. Additionally, the associations had to pass the same manual review 612

process used for the associations listed in Table I.613

614

DISCUSSION615

The major contribution of this work is a demonstration of the feasibility to 616

holistically treat the ADR prediction problem for nascent drug compounds. Our 617

methods treat the problem from microscopic levels (i.e. drug-protein binding) all 618

the way up to prediction of clinical ADR phenotypes. We show, for our particular 619

set of 560 drugs, that using molecular docking scores yields ADR prediction 620

models comparable in quality (as evaluated by AUCs) to models developed using 621

publicly available, experimentally-derived drug-protein associations. However, 622

the AUCs, for both docking scores and experimental data, are not of sufficient 623

quality for clinical prediction, and it is interesting to note the quality is poorer for624

highly multi-factorial disorders (e.g. cardiac disorders). As an example, for the 625

virtual toxicity panel model quality results shown in Figure 3, we can see that for 626

psychological disorders, the on-target relationships in the virtual panel yields a 627

model with AUCs close to 0.7, while the MM/GBSA-rescored docking scores, 628

emphasizing off-target effects, yields an AUC slightly better than random (i.e. 629

AUC=0.5).630

We first discuss some issues related to the molecular docking score 631

calculations. The current work is focused on the binding of drug ligands to off-632

target proteins, where typically little or no data exists to inform initial placements 633

of water molecules, metal ions, co-factors, and other hetero atoms. Additionally, 634
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few if any parameters are available for these atom types in most docking codes. 635

Given this and the lack of experimental or theoretical justification to guide 636

placement of these atoms into the active sites our computational methods have 637

predicted, we adopted the common practice for docking calculations, which is to 638

remove the hetero atoms in the active sites [NEED CITATIONS]. This choice is 639

consistent with state-of-the-art docking calculations, for example current virtual 640

high-throughput screening leaves water molecules out as a rule [NEED 641

CITATIONS]. Implicit solven was included in the MM/GBSA calculations.642

As stated in the Methods section, we tried several different binding 643

threshholds for the docking scores. Both the VinaLC and MMGBSA logistic 644

regression model AUCs did not monotonically vary with choice of thresholds, and 645

there were no clear trends with threshold choice with the exception that. The 646

correlation between threshold choice and AUC was noisier in the ADR groups 647

with lower overall AUC values, where the maximum value was, in some cases, 648

only greater than the second largest AUC by a few ~0.01. For ADR groups with 649

the best AUCs, the maximum AUC was often more clearly differentiated from the 650

AUCs of the other competing threshold values.651

Models trained to predict side effects in the ‘neoplasms’ and 652

‘vascularDisorders’ ADR groups on the full 560 x 409 VinaLC docking score 653

matrix (A) perform better than their DrugBank-derived counterparts (B).654

We identify several potential off-target ADR-protein associations that would be 655

impossible to find using only binding data between a drug and its intended 656

protein targets (see Table I). Some of the more compelling associations found 657
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are described below, along with supporting evidence from the literature. The658

literature cited here may describe examples where biological mechanisms are 659

perturbed by drug binding to protein constituents of pathways associated with the 660

ADRs.661

Interstitial collagenase (MMP1) with both neoplasms and vascular 662

disorders. Increased MMP-1 gene expression appears to be a biomarker for 663

cancer metastasis. Specifically, we find evidence for separate constituents of the 664

‘neoplasms’ group: breast neoplasms[58], adenocarcinoma[59], and glioma[60].665

Interstitial collagenase also seems to contribute to aneurysms. Specifically, cell 666

distribution differences of MMP-9 and the tissue inhibitor of MMP-1 in patients 667

with Kawasaki disease[61]. This work implicates interaction of MMP-9 and MMP-668

1 with aneurysm formation in Kawasaki disease.     669

Tyrosine kinase Syk with breast neoplasms and adenocarcinomas.670

A possible mechanism of interaction may be a role in suppression of breast 671

cancer metastasis to lymph nodes[62], as well as regulating cell-cell adhesion 672

and motility[63]. Some data suggest that Syk expression in the spleen may 673

inversely correlate with the proliferation and invasive capacity of breast 674

cancer[64]. Syk acts as a pancreatic tumor suppressor in pancreatic 675

adenocarcinoma tumors, regulating cellular growth and invasion[65].676

Complement C3 with breast neoplasms. An analysis[66] of expression 677

patterns for acute phase proteins in breast, colorectal, and lung cancer indicate 678

that the most accurate candidate biomarker for breast cancer in their panel was 679
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Complement 3 (C3) as used in a univariate logisitic regression model (AUC=0.89 680

and 73% correct classification performance in leave one out cross-validation).681

Cytotoxic T-lymphocyte protein 4 (CTLA-4) with sarcoidosis. A case 682

study[67] shows exacerbation of sarcoidosis in a melanoma patient treated with 683

anti-CTLA-4 monoclonal antibody inhibitor ipilimumab. Another study[68] reports684

correlations of specific CTLA-4 gene polymorphisms in sarcoidosis patients with 685

different disease phenotypes.686

Profilin-1 with endocrine-related disorders. Profilin-1 expression is 687

markedly elevated in the atherosclerotic plaques of diabetics, showing a potential 688

role in mediating diabetic-related vascular endothelial cell dysfunction[69].689

Coagulation factor IX with thyroid disorders. A meta-analysis[70]690

looked at 29 trials and 11 studies and concludes that subclinical hyperthyrodism 691

induces a pro-thrombotic state. More precisely, thyrotoxicosis shifts balance to a 692

pro-coagulant/hypofibrinolytic state.693

Caspase-3 with bipolar disorder and schizophrenia. Some papers694

hypothesize that enhanced cellular apoptosis is a disease mechanism in 695

neurodegenerative diseases. A postmortem study on bipolar disorder patients 696

shows significant increases in pro-apoptotic factors (inc. Bax, BAD, caspase-9 697

and caspase-3)[71]. A population of anti-psychotic medicine-naive first-episode 698

schizophrenia patients show higher caspase-3 activity and lower BCL2 699

expression[72].700

Integrin beta-2 and myocardial infarction. Studies have shown integrin 701

and monocyte migration to ischemic myocardium. A study[73] that performed702
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flow cytometry-based whole-blood assays in 87 patients with unstable angina 703

finds that beta-2 integrin mediated T-cell recruitment in coronary plaques 704

identifies high-risk patients with severe coronary artery disease but no 705

myocardial infarction and is predictive of future CV events even in the absence of 706

myocardium damage markers like troponin or high-sensitivity C-reactive protein.707

We also find ADR-protein associations for the 16-protein consensus 708

panel. The protein targets are included in panels used by major pharmaceutical 709

companies for in vitro screening of ADRs for drugs in the development pipeline. 710

Our results provide a rationale, founded on independent calculations, for their 711

inclusion in the panel based on side effect phenotypes for which they probe.712

Potential ADR-protein associations, supported by some level of evidence in 713

PubMed, are listed in Table II. Among them, we found a correlation between 714

agranulocytosis and the histamine H1 receptor (an example is the drug clozapine 715

an H4-receptor agonist with some H1 activity)[74]. Also, a number of cardiac-716

related side effects were associated with Prostaglandin G/H synthase 2 717

(Cyclooxygenase 2), in particular ‘myocardial infarction’ which yielded 217 718

PubMed hits.719

Using molecular docking scores for drug-protein matrices has advantages 720

over other approaches to predict association of “off-target” effects. Molecular 721

docking is a first-principles approach based on a physics-derived force field, such 722

that only the structure of the drug and the protein are necessary. Not surprisingly, 723

the docking approach does not have as strong a dependence on the availability 724

of drug-protein correlations in manually curated biological or chemical databases725
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(which are biased toward intended, on-target effects), though this data can be 726

integrated into our type of analyses as well. Experimental drug-protein 727

association matrices are extremely sparse, i.e. there are large areas of the drug x728

protein matrix that are unexplored by in vitro assays or clinical trials. In contrast, 729

the docking calculations enable an exhaustive probing of binding associations 730

through the entire drug x protein matrix, allowing the exploration un-intended (i.e. 731

off-target) interactions that might not have been previously experimentally 732

investigated during drug development. Thus, docking scores provide a direct way 733

to probe off-target effects.734

Here we compare our work to previous efforts that have applied molecular735

docking to study ADR-protein correlations. A recent large-scale drug-protein 736

docking exercise was described in [30], but this effort had a different goal than 737

our study. While the work outlined in [30] appears to focus on a highly automated738

method where structures are prepared and docked in a bulk fashion, we have 739

chosen to initially focus on a smaller group of drug-protein interactions, hand-740

curating the initial docking structures, so the quality of the drug-protein binding is 741

sufficiently high that we can link to ADR outcomes downstream of docking. No 742

attempt, beyond identifying the tissue tropism of the receptors used in docking, is 743

made to correlate the results of docking to ADR phenotypes. The work of 744

Wallach et al [29] bears some similarities to our work and here we list some of 745

the major differences between the two efforts. Specifically, we: 1) use q-values to746

correct for multiple hypothesis testing, which has been previously shown to 747

indicate “interesting” protein-side effect correlations[21], 2) focus on proteins 748
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rather than pathways and on only on a small set of serious ADRs, 3) consider 749

multiple binding thresholds for binding, in addition to 1-SD above the mean of the 750

z-scored docking scores used by Wallach et al., 4) compare model performance 751

across ADRs (thru AUC), where the work in [29] is focused on ADR-pathway 752

associations, and 5) are interested in ADR prediction using the docking scores. 753

Although, Wallach et al also use L1-regularization to mitigate over-fitting, our 754

lambda parameter is chosen thru 10-fold cross-validation, while their lambda 755

parameter seems to have been arbitrarily chosen to be ½ the value needed to 756

suppress all beta coefficients to zero. They do not appear to discuss the 757

associations they produce in quantitative terms (AUCs of the models, p-values of 758

the associations). Also, their study treats each side effect individually, which may 759

lead to bad class imbalances with more rare ADRs, a common problem in QSAR760

studies. We mitigate this issue by classifiying ADR phenotypes into groups. 761

The limitations of our method can be categorized into two areas: 1) 762

molecular docking and 2) ADR phenotypes.  In the ‘Introduction’ section, we 763

noted the inherent biases in the QSAR-like studies given their reliance on 764

experimental data derived from approved drugs. While the molecular docking 765

studies advocated here does not suffer the same bias towards approved drugs, 766

the methods presented are biased heavily to proteins that have available of 3D 767

structures, which restricts these methods to ~50% of the human proteome, as 768

estimated by Xie et al. [CITE Xie paper]. Unfortunately, this missing cohort of 769

proteins will be highly enriched with some of the more important classes for 770

ADRs namely membrane-bound receptor proteins. Future work on our virtual 771
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drug-protein panel will include a focus on applying state-of-the art methods to 772

create and validate homology models to mitigate this bias.773

For molecular docking to be a feasible method for predicting “off-target” 774

associations, the execution of the docking needs to be fast and reliable.  Our 775

implementation of the well-vetted Vina docking program, VinaLC, has been 776

optimized for HPC and has been benchmarked with known limitations (e.g. 777

metalloproteins)[32].  However, we are limited by the availability of 3D structures 778

of target proteins relevant for side effects and the quality of those 3D structures.  779

With the growing number of protein crystal structures and the higher quality 780

homology models, we believe the availability of quality 3D protein structures is 781

growing each year. In principal the docking score technology and statistical 782

analyses methodology we present can scale to large numbers, the actual scaling 783

behavior has yet to be characterized. As new proteins and new drugs are added 784

to our calculations, we would expect quadratic scaling in the drug x protein 785

matrix. The machine learning algorithms used to learn statistical correlations from 786

this data should scale as a higher-degree polynomial of the number of training 787

samples, i.e. docking profile of a drug. The benefit of utilizing an HPC platform is 788

that the effects of non-linear saling can be addressed by the allocation of 789

additional compute nodes and processors. Investigation of the actual scaling 790

behavior with increasing data set size and increasing number of CPUs remains 791

to be done as future work. 792

For ADR phenotypes, we are currently limited by the availability of clinical 793

data on ADR phenotypes linked to drugs and publicly available ADR outcomes 794
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data will always be biased toward approved drugs. Our results point to the 795

importance of the target proteins, which might not be known for nascent 796

compounds. The known or intended targets appear to be important for ADRs 797

associated with major organ systems (e.g. renal, hepatic, and cardiac). Results 798

of the toxicity panel analysis indicate that even at the MM/GBSA level, we need 799

to improve the drug-target interaction estimates, as shown by the poor 800

performing median AUCs for the ADR groups, endocrine, psychiatric, and renal.801

Everything else seems to track well with two layers of noise: drug-protein binding 802

as an indicator of multi-factorial diseases and docking scores as indicators.  Also, 803

the minimal "comprehensive" set of proteins needed to obtain high-quality ADR 804

prediction models is unknown.  As more proteins and pathways are associated 805

with ADR phenotypes, the minimal comprehensive set will be soon be obtained.806

There are also limitations associated with the way we corroborated 807

putative ADR-protein associations with literature studies. Biological terms are 808

used ambiguously in the literature. It was not our intent to find and report 809

accurate, exhaustive numbers of papers that contained a particular putative 810

ADR-protein correlation in PubMed. Rather, we wanted a well-defined, (i.e. 811

UniProt names for proteins and MedDRA lowest-level terms for side effects) 812

standardized way that would allow us to see a preponderance (e.g. more then 813

10) of papers in the literature, where we could then obtain a sample and examine 814

the quality of the correlation manually. Any other approach (e.g. stemming the 815

terms) would have some ambiguity associated with it.816

817



37

CONCLUSIONS818

We have shown in this study that molecular docking may provide reliable, cost-819

effective, comprehensive, high-throughput screening of a drug candidate for 820

binding across many known targets to provide predictions of clinically important 821

ADRs. By introducing a first principles approach to in silico ADR prediction for 822

drug compounds that heavily leverages physics-based models and HPC, we 823

docked 560 small molecule drugs to 409 structures of identified DrugBank 824

protein targets.  Only 21% (87 out of 409) of the drug-protein binding features 825

involve known targets of the drug subset, providing a significant probe of off-826

target effects.  The median AUCs obtained during 10-fold cross-validation were 827

comparable between the VinaLC off-target models (AUC=0.60-0.69), and the 828

DrugBank on-target models (AUC=0.61-0.74) across the ten ADR groups.  Most 829

importantly, the VinaLC off target model out performed the DrugBank on target 830

model for predicting two ADR group, neoplasms and vascularDisorders.  We 831

further investigated the associations between the ten ADR groups and a 832

consensus subset of 16 proteins used in early-stage in vitro toxicity screening 833

panels.  The analysis identified several putative ADR-protein associations.  834

Successful PubMed queries found published results in support of these putative 835

ADR-protein associations.  For example, several associations between 836

neoplasm-related ADRs and known tumor suppressor (Syk) and tumor 837

invasiveness marker (MMP-1 and C3) proteins are found.  Many of these 838

associations involve off-target proteins and would not have been found using 839

only the available drug-target data.  Thus, increasing the reliability of the drug-840



38

protein binding calculations and increasing the protein target set to include more 841

proteins outside the known protein targets in DrugBank should identify additional 842

off-target proteins which are associated with possible ADRs.  This predictive 843

computational platform would be advantageous during the drug development 844

stage to predict ADRs of drug candidates such that candidates could be dropped 845

or redesigned at an earlier stage.846
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Figure Legends1080

1081

Figure 1. Data integration/analysis workflow scheme. The UniProt IDs of 1082

4,020 proteins identified in DrugBank as drug targets were extracted. We 1083

obtained 409 experimental protein structures from the Protein Data Bank (PDB) 1084

to be used as a virtual panel and docked to 906 FDA-approved small molecule 1085

compounds using the VinaLC docking code, run on a high-performance 1086

computing machine at LLNL. 560 compounds had side effect information in the 1087

SIDER database and were used in subsequent statistical analysis to build logistic 1088

regression models for ADR prediction.1089
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Figure 2. ADR prediction models using ‘Vina Off Targets’ and ‘DrugBank 1102

On-Targets’. Boxplots of median AUC results for one vs. all L1-regularized 1103

logistic regression models trained using 10-fold cross-validation repeated ten 1104

times are shown. The individual models were trained on ten different adverse 1105

drug reaction (ADR) groups: Neoplasms, benign, malignant, and unspecified (N), 1106

Blood and lymphatic systems disorders (B), Immune system disorders (I), 1107

endocrine disorders (E), Psychiatric disorders (P), Cardiac disorders (C), 1108

Vascular disorders (V), Gastrointestinal disorders (G), Hepatobiliary disorders 1109

(H), and Renal Disorders (R). Red boxes indicate models trained on 560 x 409 1110

VinaLC docking scores used as drug-protein binding features (also indicated by 1111

.VD in the x-axis labels). Blue boxes indicate models trained on a 560 x 555 1112

matrix containing DrugBank drug-target protein associations (also indicated by 1113

the .DB appending the labels).1114
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Figure 3. ADR prediction using a 16-protein virtual toxicity screening panel 1124

suggested by Bowes et al.[6]. Red boxes (and the .G on the labels) indicate 1125

models trained on GBSA-corrected VinalLC docking scores while the blue boxes 1126

(and the .DB) indicate models trained on DrugBank drug-target protein 1127

associations.  The boxplots comprise the distribution of median AUC scores after 1128

one vs. all L1-regularized logistic regression model training using 10-fold cross-1129

validation repeated ten times. The individual models were trained on ten different 1130

adverse drug reaction (ADR) groups: Neoplasms, benign, malignant, and 1131

unspecified (N), Blood and lymphatic systems disorders (B), Immune system 1132

disorders (I), endocrine disorders (E), Psychiatric disorders (P), Cardiac 1133

disorders (C), Vascular disorders (V), Gastrointestinal disorders (G), 1134

Hepatobiliary disorders (H), and Renal Disorders (R). 1135
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Table I. Top-ranked ADR-protein associations derived from models built using 1147

the 560 x 409 docking score matrix. The docked protein responsible for the 1148

association with the ADR is identified in the first, second columns, and third 1149

columns using the UniProt name and ID and the corresponding PDB ID, 1150

respectively. Columns 4,5,6 give data on the statistical significance of the 1151

association with the p-value of the association, the associated false discovery 1152

rate (q-value), and the corresponding beta coefficient in the median AUC logistic 1153

regression model. Bold UniProt IDs are off-target proteins (i.e. not intended 1154

targets of the 732 drugs we consider).1155

1156

UniProt�Name UniProt�ID PDB�ID�# p-value q-value beta UniProt�protein-MedDRA�side�effect�PubMed�hits

Interstitial�collagenase P03956 1hfc 0.004 0.531 2.348
breast�neoplasm(158),�adenocarcinoma(161),�glioma(34),�
basal�cell�carcinoma(22)

Tyrosine-protein�kinase�SYK P43405 1xbb 0.012 0.531 1.213 breast�neoplasm(46),�adenocarcinoma(11)

Peroxisome�proliferator-activated�receptor�alpha Q07869 2znn 0.016 0.531 0.602

breast�neoplasm(95),�adenocarcinoma(146),�glioma(25),�

basal�cell�carcinoma(14)

Complement�C3 P01024 2wy8 0.034 0.531 0.698

breast�neoplasm(65),�adenocarcinoma(136),�glioma(21),�

lung�neoplasms�malignant(12),�basal�cell�carcinoma(7)
Cytotoxic�T-lymphocyte�protein�4 P16410 3osk 0.003 0.555 0.211 sarcoidosis(11),�vasculitis(24)

Profilin-1 P07737 1fil 0.000 0.005 0.338 endocrine�disorder(10)

Coagulation�factor�IX P00740 1edm 0.000 0.005 0.019

endocrine�disorder(108),�diabetes�mellitus(48),�thyroid�

disorder(22),�hyperthyroidism(11),�hypothyroidism(10)

Interleukin-5 P05113 1hul 0.000 0.005 0.092
endocrine�disorder(35),�diabetes�mellitus(19),�thyroid�
disorder(10)

Caspase-3 P42574 2dko 0.002 0.188 -1.876 bipolar�disorder(14),�schizophrenia(31)

Integrin�beta-2 P05107 2p26 0.020 1.000 -0.886

cardiac�arrest(11),�cardiomyopathy(44),�myocardial�

infarction(46)
Interstitial�collagenase P03956 1hfc 0.000 0.060 0.429 aneurysm(39),�aortic�aneurysm(31),�arteriosclerosis(123)

Gelsolin P06396 2fh1 0.000 0.009 -0.073 nephropathy(38),�renal�failure(12)

1157
1158

1159

1160

1161

1162

1163

1164
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1165

1166

1167

1168

1169

1170

Table II. ADR-protein association derived from models built using the 560 x 16 1171

GBSA-corrected virtual screening panel.1172

1173

UniProt�Name UniProt�ID Corrected�p-value ADR�Group UniProt�protein�-�MedDRA�side�effect�PubMed�hits

Amine�oxidase�[flavin-containing]�A P21397 0.005 bloodAndLymph agranulocytosis(5)
Histamine�H1�receptor P35367 0.007 bloodAndLymph agranulocytosis(10)

Beta-2�adrenergic�receptor P07550 0.007 endocrineDisorders
endocrine�disorder(164),�diabetes�mellitus(98),�thyroid�
disorder(31),�hyperthyroidism(19),�hypothyroidism(16)

5-hydroxytryptamine�receptor�1B P28222 0.007 endocrineDisorders endocrine�disorder(15),�diabetes�mellitus(11)

Androgen�receptor P10275 0.018 psychDisorders schizophrenia(18)

Prostaglandin�G/H�synthase�2 P35354 0.024 cardiacDisorders

cardiac�arrest(11),�cardiomegaly(22),�cardiomyopathy(91),�
myocardial�infarction(217),�myocarditis(11)1174
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